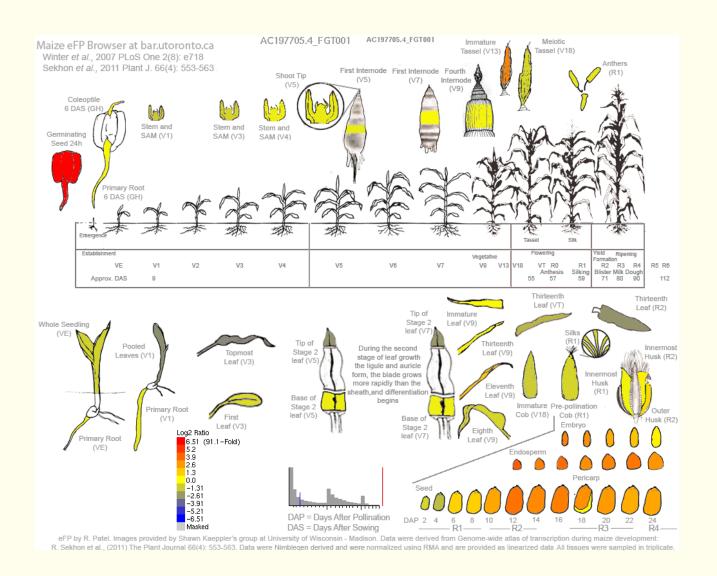
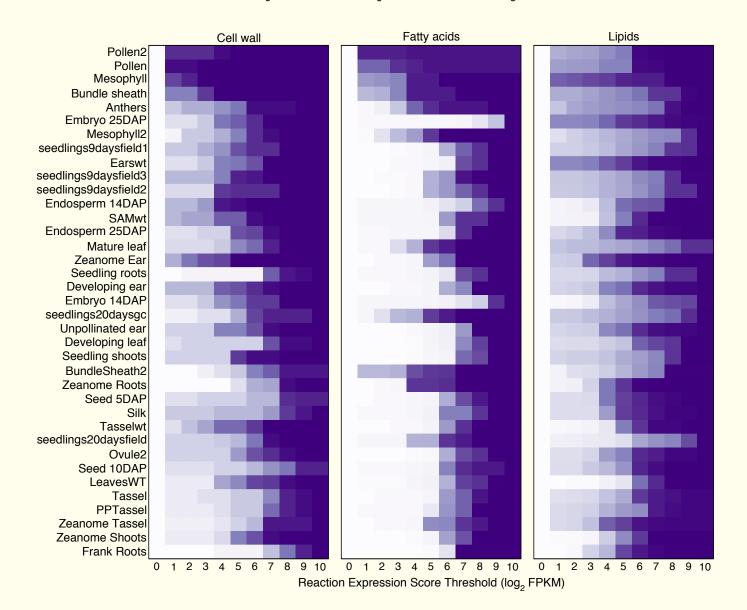
PlantSEED Workshop

Future of PlantSEED


Website

- Additional functionality will be added to the website
 - Upload
 - Specific file types and data
 - Annotation
 - K-mer (fast) and BLAST (slow)
 - Download
 - Various formats
 - Genome and Model Editing
 - Provenance
 - Additional Functionality


PlantSEED v2.0

- Improve coverage of plant primary metabolism
 - Train and test an improved set of K-mers
- Improve compartmentalization
 - Organellar genomes
 - Model Reconstruction Rules
 - Respiration & Photosynthesis
- Introduce Algae
 - Growing interest in metabolic engineering
- Publicly available annotation process

Refining models using transcriptomics

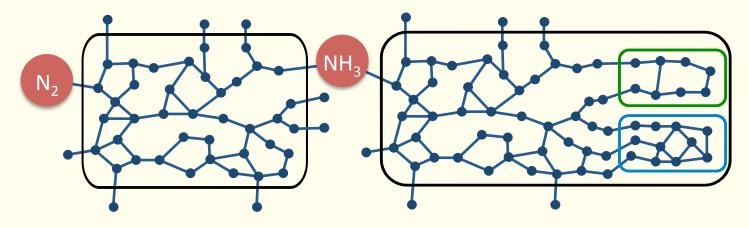
Variation of plant primary metabolism

Refining models using transcriptomics

- The refinement of a tissue-specific model should be functionally oriented
 - Primary function: Biosynthesize biomass
 - Curated for leaf, embryo, and endosperm
 - Secondary functions
- Simultaneous Transcriptome-based Gapfilling
 - Simultaneously
 - Biosynthesize biomass
 - Activates "high" reactions
 - Deactivates "low" reactions

Validation of tissue-specific model

Species	Model Type	Reactions	Gene-Reaction Associations	Endosperm (¹⁴ C data)	Embryo (¹⁴ C data)
Arabidopsis thaliana	Full	6,399	16,577	-	-
Arabidopsis thaliana	Evidenced	2,801	4,262	-	-
Zea mays	Full	6,458	35,226	0.99	0.99
Zea mays	Evidenced	2,629	5,540	0.99	0.83
Zea mays	Leaf	2,322	4,656	-	-
Zea mays	Embryo	2,304	4,680	-	0.83
Zea mays	Endosperm	2,280	4,602	0.99	-
Zea mays	iRS1562	1,962	-	0.69	0.43


Seaver *et al.* (2015) Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm. doi: 10.3389/fpls.2015.00142

Plant-Microbial Interactions

- The refinement of a tissue-specific model should be functionally oriented
 - Primary function: Biosynthesize biomass
 - Curated for leaf, embryo, and endosperm
 - Secondary functions
- Simultaneous Transcriptome-based Gapfilling
 - Simultaneously
 - Biosynthesize biomass
 - Activates "high" reactions
 - Deactivates "low" reactions

Plant-Microbial Interactions

 The nitrogen provided for the biomass of a Sphagnum moss is fixed by a cyanobacteria

Secondary Metabolism

- Some pathways are available in PlantSEED but a couple are specific to Arabidopsis
- Highly diversified pathways present a unique challenge
 - Idea of Last Common Metabolite (LCM) for a phylogenetic family.
 - K-mers?

Thank You!

- Comments?
- Don't forget the feedback form.